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Abstract
Aims  Metabolomics have been used to evaluate the role of small molecules in human disease. However, the cost and com-
plexity of the methodology and interpretation of findings have limited the transference of knowledge to clinical practice. 
Here, we apply a targeted metabolomics approach using samples blotted in filter paper to develop clinical-metabolomics 
models to detect kidney dysfunction in diabetic kidney disease (DKD).
Methods  We included healthy controls and subjects with type 2 diabetes (T2D) with and without DKD and investigated the 
association between metabolite concentrations in blood and urine with eGFR and albuminuria. We also evaluated perfor-
mance of clinical, biochemical and metabolomic models to improve kidney dysfunction prediction in DKD.
Results  Using clinical-metabolomics models, we identified associations of decreased eGFR with body mass index (BMI), 
uric acid and C10:2 levels; albuminuria was associated to years of T2D duration, A1C, uric acid, creatinine, protein intake 
and serum C0, C10:2 and urinary C12:1 levels. DKD was associated with age, A1C, uric acid, BMI, serum C0, C10:2, C8:1 
and urinary C12:1. Inclusion of metabolomics increased the predictive and informative capacity of models composed of 
clinical variables by decreasing Akaike’s information criterion, and was replicated both in training and validation datasets.
Conclusions  Targeted metabolomics using blotted samples in filter paper is a simple, low-cost approach to identify outcomes 
associated with DKD; the inclusion of metabolomics improves predictive capacity of clinical models to identify kidney 
dysfunction and DKD-related outcomes.
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DKD	� Diabetic kidney disease
DBS	� Dried blood samples
T2D	� Type 2 diabetes
eGFR	� Estimated glomerular filtration rate

A1C	� Glycosylated hemoglobin
ACEI/ARB	� Angiotensin-converting enzyme inhibi-

tors/angiotensin II receptor blockers
SBP	� Systolic blood pressure
DBP	� Diastolic blood pressure
U/B ratio	� Ratio or urinary divided by blood concen-

tration of measured metabolites
ARG​	� Arginine
CIT	� Citrulline
GLY	� Glycine
ALA	� Alanine
LEU	� Leucine + isoleucine
MET	� Methionine
PHE	� Phenylalanine
TYR​	� Tyrosine
VAL	� Valine
ORN	� Ornithine
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PRO	� Proline
SA	� Succinylacetone
C0	� Free carnitine
C2	� Acetylcarnitine
C3	� Propionylcarnitine
C4OH\C3DC	� 3-Hydroxybutyryl + malonyl carnitine
C5OH\C4DC	� 3-Hydroxyisovaleril + methylmalonyl 

carnitine
C5DC\C6OH	� Glutaryl + 3-hydroxyhexanoyl carnitine
C6DC	� Adipylcarnitine
C4	� Butyrylcarnitine
C5	� Isovalerylcarnitine
C5:1	� Tiglylcarnitine
C6	� Hexanoylcarnitine
C8	� Octanoylcarnitine
C8:1	� Octenoylcarnitine
C16	� Decanoylcarnitine
C16:1	� Decenoylcarnitine
C16:1OH	� Decadienoylcarnitine
C16OH	� Dodecanoylcarnitine
C10	� Dedecenoylcarnitine
C10:1	� Tetradecanoylcarnitine
C10:2	� Tetradecenoylcarnitine
C12	� Tetradecadyenylcarnitine
C12:1	� 3-Hydroxy-tetradecanoylcarnitine
C14	� Hexadecenoylcarnitine
C14:1	� Hexadecenoylcarnitine
C14:2	� 3-Hydroxy-hexadecanoylcarnitine
C14OH	� 3-Hydroxy-hexadecenoylcarnitinae
C18	� Octadecanoylcarnitine
C18:1	� Octadecenoylcarnitine
C18:1OH	� Octadecenoylcarnitine
C18:2	� 3-Hydroxy-octadecanoylcarnitine
C18OH	� 3-Hydroxy-octadecanoylcarnitine

Introduction

Diabetic kidney disease (DKD) is a diabetes complication 
whose clinical diagnosis is made based on the presence of 
albuminuria and/or reduced estimated glomerular filtration 
rate (eGFR) in the absence of signs or symptoms of other 
primary causes of kidney damage [1]. DKD imposes sig-
nificant burden in patients by increasing mortality risk and 
posing barriers for allotransplantation in advanced stages 
[2, 3]. Early DKD alterations include glomerular hypertro-
phy, mesangial expansion and basal membrane thickening, 
with late changes characterized by nodular sclerosis. Unfor-
tunately, identification of histological alterations is costly, 
invasive and has not shown independent correlation with 
clinical outcomes [4, 5]. This has led to development of bio-
markers to improve identification and screening of DKD. 
Existing kidney dysfunction indicators in DKD include 

serum creatinine and albuminuria, both of which have major 
limitations [6–8]. Serum creatinine concentration changes 
until there is an important loss of renal function. In addition, 
renal function is overestimated by the amount of tubular 
secretion of creatinine and varies per age, gender, muscle 
mass and metabolism, body weight, protein and water intake 
[5]. Albuminuria onset demonstrates established glomeru-
lar dysfunction but is not exclusive of DKD, despite being 
required for diagnosis [2, 7]. Additional kidney function 
markers in DKD include cystatin-C and the neutrophil 
gelatinase-associated lipocalin (NGAL), which have been 
shown to correlate with kidney dysfunction in T2D; never-
theless, their clinical usefulness remains to be further stud-
ied [7, 8]. Therefore, development of novel biomarkers that 
correlate with kidney dysfunction and improve identification 
of DKD at earlier stages is still an unmet necessity [2, 8].

The study of the metabolome aims to identify small-
molecule profiles of complex biological samples instead of 
individual metabolites to improve the informative capacity 
of biochemical analyses [9–12]. The utility of metabolomics 
in DKD has been proved by different groups, who have 
reported abnormal plasma concentrations of amino acids and 
acylcarnitines associated with risk of progression of kidney 
disease [13–15]. Targeted metabolomics is an alternative 
for the study of relatively high number of samples, with the 
advantage that it can be performed on dry biological sam-
ples blotted in filter paper, which is a low-cost approach to 
store and handle biological samples [15]. To the best of our 
knowledge, this approach has not been applied in studies of 
DKD. This work aims to propose the complementary use 
of metabolomics to improve kidney dysfunction prediction 
in DKD.

Materials and methods

Subjects and study setting

We performed a cross-sectional evaluation of 200 T2D 
individuals who were recruited from our Diabetes Clinic 
and healthy subjects from the Metabolic syndrome cohort 
of the Instituto Nacional de Ciencias Médicas y Nutrición 
Salvador Zubirán (INCMNSZ), which is a cohort study 
that includes a large number of subjects with and without 
T2D. We divided the study population into three groups: 
(1) Healthy normotensive, non-obese subjects with normal 
kidney function, (2) T2D subjects without DKD (T2Dnon-
DKD) with diabetes diagnosis duration ≥ 10 years and (3) 
T2D with DKD (T2DDKD) with ≥ 10 years diabetes dura-
tion and any grade of diabetic retinopathy to confirm micro-
vascular disease. We excluded subjects with other causes 
of kidney disease, previous acute ischemic heart disease or 
any condition that may alter albumin excretion or creatinine 
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clearance. T2D was diagnosed according to standardized 
ADA recommendations. Albuminuria was defined by uri-
nary albumin > 30 mg/24 h and DKD by the presence of 
either albuminuria and/or eGFR < 60  mL/min/1.73  m2. 
The Human Research Ethics Committee of the INCMNSZ 
approved all proceedings in the study.

Biochemical and anthropometric measurements

Twenty-four hour urine sample recollection was performed 
the day prior to biochemical evaluation; patients received 
a container with 200 μl of protease inhibitor (aprotinin 
protease inhibitor 500 KIU/mg, Thermo Fisher Scientific) 
and were instructed to collect urine during a 24 h period. 
After recollection, blood was drawn between 8:00–9:00 am 
after an overnight fast of 8–12 h. Glucose, total cholesterol, 
triglycerides, uric acid, serum and urine creatinine, HDL 
cholesterol, and albuminuria were determined by enzymatic 
colorimetric commercially available reagents using the Syn-
chron CX Delta (Beckman Coulter); A1C levels were meas-
ured by high-performance liquid chromatography. For GFR 
estimation (eGFR), we calculated creatinine clearance using 
a 24 h creatinine measurement [16, 17].

In the same visit, a complete medical and family history 
was obtained from all subjects, including evaluation of die-
tary protein intake from 1 month and the day prior to urine 
recollection. Patients were weighed on calibrated scales 
and height was determined with a floor scale stadiometer. 
We consigned all medications used by patients; none of the 
subjects were receiving carnitine or fatty acid supplements 
during the evaluation.

Metabolomic analyses

Fasting capillary blood and 24 h urine samples obtained 
the day of biochemical evaluation were collected in filter 
paper cards (Protein Saver 903 cotton cards, Whatman-GE, 
USA), dried and conserved in refrigeration until analysis, 
performed as previously described [18, 19]. Eleven amino 
acids, free carnitine and 30 acylcarnitines were measured 
with a commercial kit (NeoBase Non-derivatized MS/MS 
kit; PerkinElmer Waltham Massachusetts). From each sam-
ple, a 3 mm diameter disk was punched with an automatic 
device (Dried blood spot punch Wallac 1296-071) into a 
96-well sample plate and 190 µL of extraction solution 
containing a mixture of 22 stable isotope-labeled internal 
standards were added. The plate was covered with aluminum 
foil, incubated with agitation (30 °C at 650×g for 30 min). 
30 µL of sample extracts were directly injected by a 2777 C 
Waters auto-sampler (Waters Corp., Milford, MA and HPLC 
pump Waters 1525 µ) to the electrospray tandem mass spec-
trometry equipment (Quattro Micro API tandem MS using 
multiple reaction monitoring (MRM) mode), with a flow rate 

of 1.5 mL/min and an analysis time of 1.5 min. Metabolites 
were quantified by reference to appropriate internal stand-
ards with the MassLynx® software. Low and high analyti-
cal controls were included in each plate in triplicate; addi-
tionally, a blank sample (extraction solution with internal 
standards) was included in each plate. Intra- and inter-plate 
variation coefficients were calculated based on repetitive 
measurements of the analytical control sample. Inter- and 
intra-assay variation coefficients ranged from 5 to 9%.

Statistical analysis

Inter‑group comparisons

We used Kolmogorov–Smirnov test to explore distribu-
tion of each variable. Log and inverse transformations were 
applied to approximate normality in variables showing non-
parametric distribution. Data are presented as mean ± SD 
or as median and interquartile range, where appropriate. 
Categorical variables are reported as frequencies and per-
centages; frequency distribution of categorical variables 
between groups was compared using chi-squared tests. To 
evaluate inter-group differences in individual metabolites, 
we compared metabolite concentrations across groups using 
ANOVA and Fisher’s LSD for multiple post hoc compari-
sons. To evaluate the association between metabolites, eGFR 
and albuminuria, we performed partial correlation analysis 
adjusted for BMI, A1C, gender, ACRI/ARB use, SBP, DBP 
and dietary protein intake.

Linear clinical‑metabolomics models

We developed manual step-wise multiple linear regression 
models using eGFR and albuminuria as dependent varia-
bles to evaluate the association of clinical, biochemical and 
metabolomic variables adjusted for age, sex, A1C, ACEI/
ARB use, protein consumption, SBP and DBP. Variables 
were removed from the model until the best fitting model 
with the maximum adjusted r2 was achieved; to confirm the 
improvement in the informative capacity of the model we 
used the Akaike information criterion (AIC) in both mod-
els. Models were also tested for multicollinearity using both 
tolerance and variance inflation factor (VIF). The models 
were validated using cross-validation derived from a train-
ing and validation samples randomly split from the original 
cohort to correct for over-optimism. Variables selected to 
enter regression analyses were those correlated significantly 
with albuminuria and eGFR.

Binary logistic clinical‑metabolomics models

Variables associated with eGFR and albuminuria in lin-
ear regression analyses were included in binary logistic 
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regression models to detect decreased eGFR (< 60 mL/
min) and albuminuria (> 30 mg/24 h), adjusted for age, sex, 
A1C levels, ACEI/ARB use, protein intake, SBP and DBP. 
The models were also validated using cross-validation. The 
performance of the models to be concordant with clinical 
outcomes was assessed using the area under a receiver oper-
ating characteristic (ROC) curve (Harrel’s c statistic) of esti-
mated probabilities obtained from regression analyses and 
goodness of fit was assessed using the Hosmer–Lemeshow 
test. A p < 0.05 was considered statistically significant. All 
statistical analyses were performed using Statistical Pack-
age for Social Sciences software (SPSS, version 21.0) and 
R software (Version 3.4.5).

Results

Clinical and biochemical characteristics of studied 
subjects

Two-hundred subjects were evaluated as follows: 43 subjects 
in the control group, 102 in the T2DnonDKD group and 
55 in the T2DDKD group (Table 1). Recruitment process 
and sample size calculation are outlined in Supplementary 
Material. DKD subjects were significantly older, mostly 
male and had higher triglyceride, creatinine, A1C and lower 
HDL-c concentrations compared to other groups (p < 0.001). 

Seventy-four subjects were treated with ACEI/ARB, 19 sub-
jects had overt DN (albuminuria > 300 g/24 h) and 24 sub-
jects had eGFR < 60 mL/min/1.73 m2.

Metabolite concentrations between groups 
and correlation with albuminuria and eGFR

We observed significant differences between T2DDKD and 
other groups in concentrations of blood C0, citrulline, tyros-
ine and C6, urinary C10:1, U/B proline, C6, C8, C10:1 and 
C10:2 (p < 0.001, Table 2). Next, we explored correlation 
between albuminuria, eGFR and metabolomic variables, 
which are shown in Table 3.

Linear clinical‑metabolomics models

Using step-wise linear regression, we constructed a clini-
cal model to predict albuminuria using A1C, serum creati-
nine and dietary protein intake, adjusted for age, sex, ACEI/
ARB use, SBP and DBP (Table 4); when we introduced 
metabolomics, we found significant associations for serum 
citrulline, C0, C10:2 and urinary C12:1, which increased the 
explained variability of the model and decreased the AIC, 
thus improving informative capacity of the model. When 
using eGFR as the dependent variable, significant clinical 
associations included A1C, years of T2D exposure and uric 
acid; the inclusion of metabolomics increased the explained 

Table 1   Clinical and biochemical characteristics of studied patients

Values are means ± SD, unless indicated otherwise
T2D Type 2 diabetes mellitus, DKD diabetic kidney disease, BMI body mass index, BP blood pressure, A1C glycosylated hemoglobin, HDL-c 
high-density lipoprotein cholesterol, LDL-c low-density lipoprotein cholesterol, eGFR estimated glomerular filtration rate
*p < 0.001 Healthy vs. T2DnonDKD and T2DDKD, +T2DnonDKD vs. T2DDKD, &T2DDKD vs. healthy and T2DnonDKD

Parameter Healthy individuals (N = 43) T2DnonDKD (N = 102) T2DDKD (N = 55) P

Female sex (%) 28 (65.1%) 69 (67.6%) 20 (36.4%) < 0.001
Age (years) 54.65 ± 9.08* 60.40 ± 8.22 61.71 ± 8.82 < 0.001
BMI (kg/m2) 25.21 ± 3.51* 28.17 + 3.95 27.11 + 3.87 < 0.001
Waist/hip ratio 0.89 ± 0.15* 0.92 ± 0.07 0.94 ± 0.08 0.015
Systolic BP (mmHg) 105.09 ± 13.79* 125.51 ± 16.79 130.6 ± 19.38 < 0.001
Diastolic BP (mmHg) 70.25 ± 8.87* 74.4 ± 9.98 76.71 ± 11.30 0.004
Fasting glucose (mg/dL) 95.34 ± 9.94* 160.58 ± 57.84 161.03 ± 78.83 < 0.001
A1C (%) 5.58 ± 0.36* 8.5 ± 2.03+ 9.35 ± 2.24 < 0.001
Triglycerides (mg/dL) 129.0 (80.0-198.0)* 168.0 (111.3-241.3) 184.0 (126.0-230.0) 0.02
Total cholesterol (mg/dL) 203.28 ± 39.70* 184.32 ± 41.77 193.55 ± 41.21 0.08
HDL-C (mg/dL) 55.53 ± 15.61* 46.14 ± 13.08 46.24 ± 15.41 0.002
LDL-C (mg/dL) 118.35 ± 28.40* 100.23 ± 33.91 105.19 ± 30.45 0.02
Serum creatinine (mg/dl) 0.75 ± 0.18 0.73 ± 0.18 1.17 ± 0.84& < 0.001
Albuminuria (mg/24 h) 4.02 (0.0-5.90) 7.05 (2.75–13.17) 120.0 (37.8-554.4) & < 0.001
Uric acid (mg/dL) 5.23 ± 1.28 5.18 ± 1.17 6.21 ± 1.56& < 0.001
Diabetes duration (yr) – 16.5 ± 7.31 20.09 ± 8.82 < 0.001
eGFR (ml/min/1.73 m2) 90.44 (79.5-106.7) 99.8 (76.4-120.3) 73.3 (52.6-104.7)& < 0.001
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variability of the model, with significant associations for 
serum citrulline, C8:1, C10:2, urinary C10:1 and U/B pro-
line (Table 4), which increased the r2and decreased the AIC 
of the model.

Logistic clinical‑metabolomics models

When evaluating specific outcomes (Table 5), decreased 
eGFR was significantly associated with BMI and uric acid 
levels. The inclusion of metabolomics (C10:2) increased 

the explained variability and AUC of the model. Simi-
larly, albuminuria > 30 mg/day was associated to years 
of T2D exposure, A1C, uric acid, creatinine and protein 
intake; the inclusion of serum C0, C10:2 and urinary 
C12:1 increased the r2 and AUC of the models. Finally, 
we developed a clinical-metabolomics model for DKD, 
which included BMI, A1C, uric acid, age, C0, C10:2, 
C8:1 and urinary C12:1, which had a higher r2 and AUC 
compared to the clinical model.

Table 2   Levels of amino acids and acylcarnitines in blood, urine and the urine/blood ratio

Post hoc analysis by Fisher LSD. p values shown are differences between the group with DKD and the other groups
T2D Type 2 diabetes mellitus, DKD diabetic kidney disease, IQR interquartile range
*p value < 0.05 for healthy vs. T2DnonDKD and T2DDKD
+ p < 0.05 for healthy vs. T2DnonDKD
# p < 0.05 for healthy vs. T2DDKD
& p < 0.05 for T2DnonDKD vs. T2DDKD

Sample Metabolite concen-
tration (µM)

Healthy subjects median ± IQR T2DnonDKD median ± IQR T2DDKD median ± IQR

Blood Citrulline 24.8 (20.2–30.2)* 15.2 (11.4–20.5)& 19.5 (16.2–27.0)
Methionine 5.1 (3.8–6.1)* 3.1 (2.3–4.4) 3.2 (2.6–4.5)
Phenylalanine 42.9 (38.5–47.2)* 35.8 (31.2–40.3) 36.2 (30.9–41.2)
Tyrosine 56.3 (51.0–67.2)* 50.0 (40.8–60.7)& 46.0 (39.3–53.2)
Valine 141.8 (122.1–160.1)# 119.2 (102.4-139.3) 120.0 (100.0–141.2)
Ornithine 34.0 (30.0–42.4)* 14.7 (10.0-28.7) 16.8 (12.6–27.6)
Carnitine 33.6 (28.0–38.7)# 34.1 (27.7–41.9)& 40.7 (32.1–47.6)
C4OH:C3D 0.04 (0.03–0.05)* 0.04 (0.03–0.06) 0.05 (0.04–0.06)
C5DC\C6OH 0.10 (0.09–0.12)# 0.13 (0.10–0.16) 0.14 (0.11–0.17)
C6 0.04 (0.03–0.04)# 0.03 (0.027–0.040)& 0.04 (0.03–0.05)
C8 0.08 (0.06–0.10) 0.07 (0.05–0.10)& 0.08 (0.06–0.14)
C8:1 0.12 (0.09–0.14)# 0.13 (0.09–0.17)& 0.15 (0.10–0.22)
C10:2 0.01 (0.01–0.02)# 0.01 (0.01–0.02)& 0.02 (0.01–0.02)
C14:1 0.05 (0.04–0.07)* 0.04 (0.03–0.05) 0.05 (0.03–0.06)
C14:2 0.02 (0.02–0.03)* 0.02 (0.01–0.02) 0.02 (0.01–0.02)
C18:1OH 0.02 (0.02–0.03)# 0.02 (0.02–0.03) 0.02 (0.02–0.03)

Urine Glycine 1855.1 (1042.9-3242.4)# 1614.2 (1025.7–3048.0) 1356.4 (716.5-2229.1)
Proline 28.1 (22.9–37.5)* 51.3 (38.9–81.8) 65.1 (35.7-130.1)
C10:1 1.13 (0.81–2.09)* 1.00 (0.71–1.49)& 0.90 (0.65–1.48)
C12:1 0.76 (0.64–1.05)# 0.73 (0.55-1.00)& 0.58 (0.42–0.88)

Urine/blood Citrulline 0.70 (0.41–1.01)* 1.12 (0.82–1.85)+ 1.24 (0.78–1.90)
Methionine 3.67 (2.37–5.28)* 6.23 (4.18–9.48) 5.93 (3.83–9.66)
Ornithine 0.87 (0.62–1.19)* 2.08 (1.18–3.80) 2.05 (1.26–3.18)
Proline 0.20 (0.14–0.27)* 0.32 (0.24–0.51)& 0.40 (0.26–0.81)
C6 30.0 (18.6–75.2)* 25.6 (15.5–40.6) 16.7 (9.8–36.5)
C8 18.1 (10.1–30.9)# 17.3 (9.3–23.4) 12.3 (7.5–19.1)
C10:1 69.0 (40.5-103.9)# 64.4 (43.9–88.3)& 34.4 (21.0-61.5)
C10:2 279.3 (167.9-370.6)# 196.52 (144.9-345.5)& 148.3 (76.4–201.0)
C12:1 16.8 (11.5–21.1)# 18.6 (14.4–25.1)& 13.4 (11.1–17.6)
C14:2 15.2 (12.3–22.0)* 27.4 (17.6–37.3) 20.6 (14.6–31.5)
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Clinical‑metabolomics model validation

We then evaluated both the linear and binary logistic regres-
sion models using training (N = 118) and validation datasets 
(N = 82) to correct findings for over-optimism and validate 
the findings. We observed an increase in r2 and a decrease in 
AIC with the inclusion of metabolomics without evidence 
of multicollinearity for all models, which was replicated in 
both datasets (Table 6).

Discussion

Our study highlights the development of clinical-metabo-
lomics models related to kidney dysfunction in DKD. Here, 
we replicate previously reported abnormalities in metabo-
lomics linked to DKD using a validated method of dried bio-
logical samples (DBS) blotted in filter paper. This method 
may facilitate sample handling and could be applied in 
large-scale efforts to identify new metabolomics-based bio-
markers of DKD. Targeted metabolomics has recently been 
introduced in the study of diverse models of disease and its 
use in DKD has previously been reported in some animal 

models and more recently in human subjects. Differences in 
plasma and/or urine metabolomics between T2DDKD and 
controls suggest that this condition is associated with abnor-
malities in glycolysis and lipid and amino acid pathways 
[20–25]. At this time, identification of specific biomarkers 
of DKD using metabolomics is a topic that remains largely 
unexplored [26].

First, we evaluated clinical-metabolomics profiles that 
explain the variability in identifying kidney dysfunction in 
our cohort. We observed that the inclusion of metabolomic 
and clinical variables improved the explained variability of 
linear models for albuminuria and eGFR and yielded predic-
tive improvements. In addition, performances of estimated 
probabilities from clinical models are improved with the 
inclusion of metabolomics to detect decreased glomerular 
function, albuminuria and DKD. These observations are 
consistent with the expected course of kidney dysfunction 
in DKD, since models included A1C, BMI and years of 
T2D exposure, as well as protein intake for albuminuria and 
markers of kidney dysfunction including serum creatinine 
and uric acid, which is a byproduct of purine metabolism 
and is elevated in the setting of cellular hypoxia, oxidative 
stress and inflammation, processes which have been linked 
to kidney dysfunction, particularly albuminuria, in DKD 
[27, 28]. Overall, our results demonstrate that inclusion of 
metabolomics improves the detection threshold of glomeru-
lar dysfunction over traditional clinical variables and con-
firms the significance of studying metabolomics to evaluate 
kidney dysfunction patients with DKD [29–32].

As our observations confirmed, altered metabolic path-
ways in amino acid biosynthesis might be relevant in DKD 
[33]. Citrulline concentrations are decreased in subjects 
with T2D regardless of the presence of DKD. However, we 
observed higher serum concentrations in T2DDKD com-
pared to T2DnonDKD. Elevated levels of citrulline and 
other urea cycle metabolites have been shown to be related 
to kidney disease progression in T2D [22, 25, 26]. A pos-
sible alteration of citrulline to arginine conversion has been 
proposed as an explanation, given that these metabolites 
normally compete with endothelial nitric oxide synthase 
to increase nitric oxide production, stabilizing endothelial 
function [34]. In the case of eGFR, increased urinary and 
U/B proline were also identified in T2DDKD subjects, which 
indicates increased proline production. High proline levels 
have been related to insulin deprivation and products of pro-
line metabolism have been linked to glomerular dysfunc-
tion in advanced chronic kidney disease [34, 35]. Finally, 
we observed altered blood concentrations of phenylalanine 
in patients with DKD, which is similar to previous reports 
of low tyrosine levels in patients with type 2 diabetes and 
advanced CKD [36]. Plasma elevations of acylcarnitines in 
patients with albuminuria has previously been described [37, 
38], in our work we only found differences in U/B medium 

Table 3   Partial correlations between microalbuminuria and eGFR 
with biochemical and metabolomic variables adjusted by blood pres-
sure, A1C, gender, age, and body mass index

Albuminuria Glomerular 
filtration rate

Blood Variable r p Value r p Value
Citrulline 0.293 < 0.001 − 0.282 < 0.001
C0 0.272 < 0.001 − 0.234 < 0.001
C5DC/C6O 0.045 0.53 − 0.26 < 0.001
C6 0.233 < 0.001 − 0.232 < 0.001
C8 0.15 0.037 − 0.161 0.025
C8:1 0.15 0.037 − 0.438 < 0.001
C10:2 0.312 < 0.001 − 0.474 < 0.001
C14:1 0.124 0.085 − 0.173 0.016
C14:2 0.111 0.124 − 0.181 0.012
C18:1OH 0.199 0.005 − 0.133 0.065

Urine Glycine − 0.122 0.09 0.208 0.004
Proline 0.152 0.035 − 0.266 < 0.001
C10:1 − 0.225 0.002 0.312 < 0.001
C12:1 − 0.242 0.001 0.245 0.001

Urine/blood Proline 0.154 0.032 − 0.257 < 0.001
C6 − 0.142 0.048 0.214 0.003
C8 − 0.165 0.022 0.22 0.002
C10 − 0.195 0.007 0.255 < 0.001
C10:1 − 0.29 < 0.001 0.439 < 0.001
C10:2 − 0.288 < 0.001 0.392 < 0.001
C12:1 − 0.312 < 0.001 0.383 < 0.001
C14:2 − 0.204 0.004 − 0.207 0.004
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and large chain acylcarnitines between T2DDKD and the 
other groups. Previous reports have suggested that accu-
mulation of various acylcarnitines in plasma demonstrates 
impaired metabolite clearance due to CKD and other authors 
have proposed that an increase of urinary acylcarnitines is 
associated with early kidney damage, reflecting alterations in 
the β-oxidation pathway, which has also demonstrated altera-
tions in murine models of diabetic nephropathy [39–44]. The 
observed progressive increase of serum carnitine concentra-
tions in our study ranging from controls, T2DnonDKD and 
T2DDKD subjects has been formerly documented as related 
to impairment of acylcarnitine excretion and decreased car-
nitine clearance, indicating mitochondrial damage, which 
could lead to activation of oxidative stress pathways [43, 
45]. Available evidence supports the benefit of carnitine sup-
plementation in hemodialyzed T2D subjects, but the use of 
carnitine in DKD deserves more profound studies [40]. The 
contribution of acylcarnitines to our clinical-metabolomics 
models to identify diseased individuals with albuminuria or 
decreased glomerular function, indicates the elevated impor-
tance of acylcarnitines as markers of glomerular disease in 
DKD and its implications in identifying kidney dysfunction 
in subjects with T2D. Future studies should evaluate the 
role of metabolomics to evaluate treatment response and 

prediction of changes in kidney function related to acylcar-
nitine supplementation in individuals with DKD, as well as 
the role metabolomics to evaluate the impact of T2D medi-
cation in ameliorating kidney dysfunction [46]; proving such 
approach could be useful as a further clinical application for 
metabolomics research.

As shown, we were able to replicate findings from previ-
ous metabolomics approaches using DBS blotted in filter 
paper, which demonstrates that this technique is both viable 
and useful for targeted metabolomics in the study of DKD. 
Studies of the metabolome require collection and storage 
of biological samples, which is complex and costly [23]. 
DBS collection in filter paper is a relevant method to study 
complex biological samples, particularly in studies that face 
challenges of large sample size, longitudinal assessment or 
frequent sampling in which DBS collection in filter paper 
would reduce storage costs and facilitate sample collection 
and handling [47]. In general terms, any analyte that can be 
measured from whole blood, serum or plasma can be meas-
ured from DBS on filter paper, with the additional advantage 
of stabilizing and reducing the degradations of numerous 
analytes due to buffering by the dried blood-matrix [48, 
49]. Our results indicate that the use of this approach could 
be helpful in studying altered metabolic pathways linked to 

Table 4   Multiple linear regression analysis showing independent variables associated with albuminuria and glomerular filtration rate

Models adjusted by age, sex, BMI, SBP, DBP, A1C, T2D duration and ACEI/ARB use
T2D Type 2 diabetes, BMI body mass index, SBP systolic blood pressure, DBP dyastolic blood pressure, A1C glycosylated hemoglobin, eGFR 
estimated glomerular filtration rate

Model Parameters Parameters β Standarized β t p value 95% CI

Albuminuria Clinical R2 = 0.318
F = 10.772
P < 0.001
AIC = 224.26

A1C 0.191 0.208 3.016 0.003 0.066–0.317
T2D duration 0.041 0.201 2.542 0.012 0.009–0.073
Protein intake − 0.776 − 0.217 − 3.257 0.001 − 1.246 to − 0.306

Clinical + metabolomics R2 = 0.460
F = 13.376
P < 0.001
AIC = 183.57

A1C 0.256 0.279 4.408 < 0.001 0.142–0.371
T2D duration 0.031 0.152 2.062 0.041 0.001–0.060
Protein intake − 0.616 − 0.172 − 2.855 0.005 − 1.041 to − 0.190
Citrulline 2.508 0.217 3.126 0.025 0.213–3.087
C0 2.441 0.137 2.058 0.002 1.290–5.438
C10:2 2.256 0.175 2.703 0.025 0.001–0.020
C12:1 U − 2.187 − 0.213 − 3.365 < 0.001 − 3.982 to − 1.577

eGFR Clinical R2 = 0.395
F = 13.146
P < 0.001
AIC =− 392.14

A1C 0.034 0.180 2.750 0.007 0.010–0.059
T2D duration − 0.008 − 0.196 − 2.622 0.010 − 0.014 to − 0.002
Uric acid − 0.116 − 0.372 − 5.902 < 0.001 − 0.155 to − 0.077

Clinical + metabolomics R2 = 0.650
F = 24.056
P < 0.001
AIC = − 490.0

A1C 0.041 0.218 4.085 < 0.001 0.021–0.061
Uric acid − 0.065 − 0.209 − 4.101 < 0.001 − 0.097 to − 0.034
Citrulline − 0.333 − 0.136 − 2.688 0.008 − 0.577 to -0.088
C8:1 − 0.537 − 0.233 − 4.314 < 0.001 − 0.782 to − 0.291
C10:2 − 0.003 − 0.205 − 4.054 < 0.001 − 0.005 to − 0.002
C10:1 U 0.462 0.300 6.083 < 0.001 0.312–0.611
Proline U/B − 0.329 − 0.259 − 5.400 < 0.001 − 0.449 to − 0.209



	 Acta Diabetologica

1 3

DKD and these results could be extrapolated to other disease 
models.

Our study had some strengths and limitations. First, we 
were able to replicate previous findings in metabolomics 
of DKD using a low-cost approach in both training and 
replication datasets, which could be implemented in other 
studies to reduce costs associated to sample processing and 
storage. Second, we could collect both serum and urine 
samples to estimate differences in metabolite concentra-
tions in a cohort of patients including healthy individuals, 
which allowed us to construct clinical-metabolomics mod-
els to identify kidney dysfunction in DKD using a targeted 

metabolomics approach. Furthermore, duration of T2D in 
our cohort had a wide range of disease exposure, with a 
minimum of 10 years; this reassures that kidney dysfunc-
tion is attributable to T2D. Amongst the limitations of our 
study is the cross-sectional design, which precluded us 
from estimating the role of metabolites in identifying pro-
gression of in kidney dysfunction and the relatively small 
number of cases with albuminuria > 300 mg/24 h, which 
did not allow for comparison of overt diabetic nephropa-
thy cases. Furthermore, since variables were controlled 
in statistical analysis, there exists a possibility of residual 
confounding.

Table 5   Logistic regression analyses using decreased GFR, albuminuria and DKD as dependent variables

Models adjusted for by age, sex, BMI, SBP, DBP, A1C, T2D duration and ACEI/ARB use
BMI body mass index, SBP systolic blood pressure, DBP dyastolic blood pressure, A1C glycosylated hemoglobin, eGFR estimated glomerular 
filtration rate, OR Odds ratio, 95% CI 95% confidence interval, AUC​ area under the curve

Model Parameters Parameter β OR 95%CI p Value

Glomerular filtration 
rate < 60 mL/min

Clinical R2 = 0.344
P < 0.001
χ2 = 6.42, p = 0.600
c-statistic = 0.853
(95%CI 0.776–0.931)

BMI − 0.170 0.844 0.719–0.990 0.037
Uric acid 0.711 2.036 1.370–3.025 < 0.001

Clinical + metabolomics R2 = 0.547
P < 0.001
χ2 = 10.31, p = 0.244
c-statistic = 0.924
(95%CI 0.863–0.984)

BMI − 0.197 0.821 0.682–0.989 0.038
Uric Acid 0.580 1.786 1.149–2.776 0.010
C10:2 0.063 1.065 1.033–1.098 < 0.001

Albuminuria > 30 mg/day Clinical R2 = 0.489
P < 0.001
χ2 = 5.69, p = 0.682
c-statistic = 0.891
(95%CI 0.845–0.938)

T2D duration 0.058 1.060 1.006–1.117 0.029
A1C 0.412 1.510 1.212–1.882 < 0.001
Uric acid 0.472 1.603 1.138–2.259 0.007
Creatinine 0.918 2.504 1.054–5.946 0.038
Protein intake − 1.102 0.332 0.138–0.802 0.014

Clinical + metabolomics R2 = 0.545
P < 0.001
χ2 = 7.51, p = 0.483
c-statistic = 0.908
(95%CI 0.865–0.951)

T2D duration 0.054 1.051 0.997–1.107 0.062
A1C 0.464 1.590 1.262–2.004 < 0.001
Uric acid 0.394 1.482 1.031–2.132 0.034
Creatinine 0.322 1.380 0.584–3.262 0.463
Protein intake − 0.861 0.423 0.166–1.077 0.071
C0 0.053 1.054 0.999–1.112 0.056
C10:2 0.021 0.099 0.017–0.582 0.010
C12:1 U − 2.309 1.021 1.000-1.043 0.049

Diabetic kidney disease Clinical R2 = 0.485
P < 0.001
χ2 = 11.41, p = 0.180
c-statistic = 0.879
(95%CI 0.830–0.929)

BMI − 0.167 0.846 0.743-.963 0.012
A1C 0.353 1.424 1.153–1.758 0.001
Uric acid 0.595 1.813 1.299–2.530 < 0.001
T2D duration 0.071 1.074 1.017–1.134 0.011

Clinical + metabolomics R2 = 0.589
P < 0.001
χ2 = 4.082, p = 0.850
c-statistic = 0.913
(95% CI 0.874–0.953)

BMI − 0.192 0.825 0.715–0.951 0.008
A1C 0.520 1.682 1.307–2.165 < 0.001
Uric acid 0.506 1.659 1.138–2.421 0.009
Age 0.078 1.081 1.005–1.162 0.037
C0 0.055 1.056 1.000-1.115 0.050
C10:2 0.033 1.034 1.012–1.056 0.002
C8:1 − 0.157 0.854 0.747–0.977 0.021
C12:1 U − 1.751 0.174 0.033–0.919 0.039
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In conclusion, our study demonstrates the applica-
tions of targeted metabolomics in the study of metabolic 
alterations in DKD using a low-cost approach. The use 
of metabolomics evaluated in DBS in filter paper as a 
complementary method for DKD identification offers 
a practical alternative that could also shed light on the 
pathophysiology of DKD. Implementation of predictive 
models grouping clinical variables to identify glomeru-
lar dysfunction and albuminuria are improved with the 
use of recognized altered metabolites. The role of these 
metabolites as biomarkers of DKD remains to be studied 
and confirmed in independent longitudinal follow-up and 
replication cohorts. Targeted metabolomics in the study of 
DKD, performed simultaneously in blood and urine sam-
ples, is feasible and accessible in DBS collected in filter 
paper, which is a simple recollection device that allows 
the possibility of massive sampling, storage and analysis.
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Table 6   Model parameters for linear logistic regression clinical and clinical-metabolomics models using a training (N = 118) and validation 
(N = 82) datasets

eGFR estimated glomerular filtration rate, DKD diabetic kidney disease, AIC Akaike’s information criteria, AUC​ area under the curve (Harrel’s 
c-statistic)

Linear model Model Sample Adjusted r2 AIC p value

Albuminuria Clinical Training 0.197 133.06 0.004
Validation 0.278 118.61 < 0.001

Clinical + metabolomics Training 0.420 110.61 < 0.001
Validation 0.411 99.66 < 0.001

eGFR Clinical Training 0.445 − 168.32 < 0.001
Validation 0.354 − 232.52 < 0.001

Clinical + metabolomics Training 0.720 − 218.88 < 0.001
Validation 0.615 − 286.33 < 0.001
Validation 0.524 4.81 0.903 (0.835–0.970)

Logistic model Model Sample Adj. r2 χ2 c-statistic (95%CI)

Albuminuria (> 30 mg/g) Clinical Training 0.465 3.34 0.883 (0.819–0.947)
Validation 0.524 4.81 0.903 (0.835–0.970)

Clinical + metabolomics Training 0.584 9.14 0.903 (0.848–0.959)
Validation 0.578 4.32 0.901 (0.830–0.971)

eGFR (< 60 mL/min) Clinical Training 0.323 3.35 0.845 (0.745–0.945)
Validation 0.487 15.12 0.918 (0.840–0.997)

Clinical + metabolomics Training 0.530 3.30 0.918 (0.840–0.997)
Validation 0.717 16.14 0.931 (0.835-1.000)

DKD Clinical Training 0.469 3.880 0.874 (0.808–0.940)
Validation 0.540 2.948 0.889 (0.815–0.962)

Clinical + metabolomics Training 0.673 4.193 0.930 (0.884–0.975)
Validation 0.596 6.432 0.886 (0.884–0.975)
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