
Sevilla‑González et al. Cardiovasc Diabetol           (2021) 20:56  
https://doi.org/10.1186/s12933-021-01246-1

ORIGINAL INVESTIGATION

Clinical and metabolomic predictors 
of regression to normoglycemia in a population 
at intermediate cardiometabolic risk
Magdalena del Rocío Sevilla‑González1,2,3,4,5, Jordi Merino2,4,6, Hortensia Moreno‑Macias7, 
Rosalba Rojas‑Martínez8, Donají Verónica Gómez‑Velasco5 and Alisa K. Manning1,2,4* 

Abstract 

Background:  Impaired fasting glucose (IFG) is a prevalent and potentially reversible intermediate stage leading to 
type 2 diabetes that increases risk for cardiometabolic complications. The identification of clinical and molecular fac‑
tors associated with the reversal, or regression, from IFG to a normoglycemia state would enable more efficient cardio‑
vascular risk reduction strategies. The aim of this study was to identify clinical and biological predictors of regression 
to normoglycemia in a non-European population characterized by high rates of type 2 diabetes.

Methods:  We conducted a prospective, population-based study among 9637 Mexican individuals using clinical fea‑
tures and plasma metabolites. Among them, 491 subjects were classified as IFG, defined as fasting glucose between 
100 and 125 mg/dL at baseline. Regression to normoglycemia was defined by fasting glucose less than 100 mg/dL 
in the follow-up visit. Plasma metabolites were profiled by Nuclear Magnetic Resonance. Multivariable cox regression 
models were used to examine the associations of clinical and metabolomic factors with regression to normoglycemia. 
We assessed the predictive capability of models that included clinical factors alone and models that included clinical 
factors and prioritized metabolites.

Results:  During a median follow-up period of 2.5 years, 22.6% of participants (n = 111) regressed to normoglycemia, 
and 29.5% progressed to type 2 diabetes (n = 145). The multivariate adjusted relative risk of regression to normogly‑
cemia was 1.10 (95% confidence interval [CI] 1.25 to 1.32) per 10 years of age increase, 0.94 (95% CI 0.91–0.98) per 1 
SD increase in BMI, and 0.91 (95% CI 0.88–0.95) per 1 SD increase in fasting glucose. A model including information 
from age, fasting glucose, and BMI showed a good prediction of regression to normoglycemia (AUC = 0.73 (95% CI 
0.66–0.78). The improvement after adding information from prioritized metabolites (TG in large HDL, albumin, and 
citrate) was non-significant (AUC = 0.74 (95% CI 0.68–0.80), p value = 0.485).

Conclusion:  In individuals with IFG, information from three clinical variables easily obtained in the clinical setting 
showed a good prediction of regression to normoglycemia beyond metabolomic features. Our findings can serve to 
inform and design future cardiovascular prevention strategies.
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Background
Impaired fasting glucose (IFG), a highly prevalent inter-
mediate stage between normal glucose tolerance (NGT) 
and type 2 diabetes (T2D) [1], is characterized by meta-
bolic alterations that lead to increased type 2 diabetes 
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and cardiovascular complications [2, 3]. Empirical evi-
dence support that individuals with type 2 diabetes are 
at twofold increased cardiovascular risk as compared 
to people without type 2 diabetes [4, 5], indication that 
preventing new onset of type 2 diabetes is an efficient 
approach to reduce the burden of cardiovascular disease. 
A number of studies have demonstrated the effectiveness 
of controlling cardiovascular risk factors in reducing the 
risk of cardiovascular outcomes among patients with dia-
betes and prediabetes [6–12]. The identification of clini-
cal and molecular features associated with regression to 
normoglycemia has the potential to inform the design 
and implementation of more efficient cardiovascular 
risk-reduction strategies.

Preliminary evidence from prospective epidemiological 
studies have identified clinical predictors of regression to 
normoglycemia including age [13, 14], baseline fasting 
glucose [13–18], absence of postprandial hyperglycemia 
[13], higher insulin secretion [13, 17], lower BMI [17], 
preserved β-cell function [17, 18], lower fasting triglycer-
ides [16, 17], and higher baseline muscle mass [16]. These 
studies have been mainly conducted in individuals from 
European or Asian ancestry, and the extent to which pre-
vious findings are similar in other populations with rapid 
conversion rate from impaired fasting glucose to type 2 
diabetes such as Latino populations is unknown. The high 
prevalence of metabolic disorders in Amerindian-derived 
populations is a well-known phenomenon [19, 20]. Stud-
ies of household-level dietary patterns and eating habits 
in Mexico have confirmed an increased consumption of 
calories, fats and simple sugars [21]. Although these life-
style changes have occurred in many areas of the world, 
Amerindian-derived populations exhibit a disproportion-
ate impact on their overall health and rates of cardio-
metabolic diseases. The prevalence and incidence of type 
2 diabetes among the Hispanic population in the United 
States are higher than the national average [22]. This has 
been attributed to the transition to a westernized lifestyle 
in which increased consumption of sugars and unhealthy 
fats maximizes inherited susceptibility obesity and insu-
lin resistance [23].

In addition to clinical and genetic factors, recent evi-
dence support the use of metabolomics to identify 
metabolic pathways or biomarkers of cardiometabolic 
risk. Recent studies have linked metabolites in specific 
metabolomic pathways to cardiometabolic risk [24, 25] 
and type 2 diabetes progression, for example: markers 
of amino acid catabolism [26–29], lipid oxidation [27, 
29–32], or hexose metabolism [29, 33]. While the use of 
metabolomics has shed light on molecular mechanisms 
of increased cardiometabolic risk, the clinical use of 
metabolomics to identify individuals at increased cardio-
metabolic risk beyond conventional risk factors is still in 

its infancy. In two population-based studies, the inclu-
sion of metabolites in a prediction model that included 
conventional risk factors barely improved the discrimi-
native capability of the model with clinical variables [34, 
35]. Findings were slightly different in a recent report in 
which the inclusion of metabolomic markers helped to 
identify additional people who might be at increased risk 
of type 2 diabetes [36]. Finally, the vast majority of these 
reports represent white American or European popula-
tions, and a recent report determined that metabolomic 
signatures associated with prediabetes may be distinct in 
African Americans (AA) and European Americans (EA) 
from that previously linked to type 2 diabetes in white 
individuals [37].

The role of circulating metabolites on the regression 
from impaired fasting glucose to a normoglycemic state 
is not fully understood. The use of these metabolites with 
clinical variables could provide for the identification of 
subjects who are more likely to regress from impaired 
fasting glucose to normoglycemia. Here, we analyzed 
longitudinal data of 9637 participants from the Mexican 
Study on Nutritional and Psychosocial Markers of Frailty 
[38] who were free of diabetes at baseline. We aimed to 
identify clinical and biological predictors of regression to 
normoglycemia and establish whether adding informa-
tion from an NMR-based set of plasma metabolites could 
improve the predictive capability for regression to nor-
moglycemia beyond clinical factors.

Materials and methods
Study design and populations
We used data from a prospective observational cohort 
study of Mexican adults living in large urban settings 
of central Mexico. The study sample was comprised 
of healthy adults ≥ 20  years old, with body mass index 
(BMI) ≥ 20  kg/m2, without previously diagnosed diabe-
tes, cardiovascular disease, and cerebral vascular disease. 
Exclusion criteria included pregnancy or having an alco-
hol habit defined as consuming more than 10 servings of 
alcohol per week. Potential participants were evaluated 
at their workplaces (offices of the federal government or 
private companies), homes or during a visit to a relative 
in a medical unit. In the baseline visit, personal medical 
history, family history of type 2 diabetes, years of formal 
education, and socioeconomic status were recorded. The 
entire cohort was composed of 9637 participants with 
baseline evaluation. The follow-up examinations took 
place after a 3-year period (± 6  months). The response 
rate at follow-up was 63.7% (N = 6144). Impaired fasting 
glucose (IFG) and type 2 diabetes were defined accord-
ing to the American Diabetes Association guidelines 
[39] using a measure of fasting plasma glucose between 
100 and 125 mg/dL for prediabetes and ≥ 126 mg/dL for 
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diabetes. The analysis sample was restricted to the IFG 
subset of the cohort.

The study was approved by the Ethics Committee of the 
Instituto Nacional de Ciencias Médicas y Nutrición Sal-
vador Zubirán. Written informed consent was obtained 
from each participant. Our investigation and subsequent 
analyses were conducted in accordance with the Helsinki 
Declaration of Human Studies principles.

Assessment of regression to normoglycemia
Regression to normoglycemia was defined as having 
one measurement of fasting glucose < 100  mg/dL at the 
follow-up visit and was assessed among individuals who 
were not taking glucose lowering medication includ-
ing insulin. Incident type 2 diabetes was defined using 
the same criteria as baseline and expanded to include 
the World Health Organization criteria: having fasting 
plasma glucose ≥ 126  mg/dL, reporting taking any glu-
cose lowering medication including insulin, or diagnosis 
of type 2 diabetes by a health professional.

Assessment of clinical factors
Anthropometric measurements were conducted fol-
lowing standardized protocols. Subjects were evaluated 
while fasting, with light clothing and without shoes. 
Weight and height were used to compute BMI, as the 
ratio of weight (kilograms nearest 0.01) to squared height 
(m2). Waist and hip circumference (centimeters near-
est 0.5) were measured at the midpoint between the 
lower ribs and the iliac crest, and at the level of the tro-
chanter major respectively. Both were used to calculate 
the waist-hip index. Homeostasis Model Assessment 
for Insulin Resistance (HOMA-IR) was calculated using 
the following formula: fasting glucose (mg/dL) * fasting 
insulin/405) [40]. Homeostasis Model Assessment for 
cell-beta function (HOMA-B) was estimated with the fol-
lowing formula: 20 * fasting insulin (mmol/L) − 3.5 [40]. 
Insulin sensitivity was estimated also using METS-IR; it 
was computed as Ln((2 * fasting glucose (mg/dL)) + fast-
ing triglycerides(mg/dL)) * body mass index (BMI))/
(Ln(HDL-c)) [41]. Physical activity (physically active vs 
sedentary habit) was measured using the International 
Physical Activity Questionnaire [42]. Sedentary behavior 
is defined as any seated or reclined posture (e.g., sitting, 
lying down, and driving) that expends 1.50 or less Meta-
bolic Equivalent Tasks (METs) while moderate to vigor-
ous physical activity (MVPA) is any activity that expends 
3.00 or more METs. Hypertension was defined as a sys-
tolic blood pressure (SBP) of ≥ 140 mmHg, or a diastolic 
blood pressure (DBP) of ≥ 90  mmHg, or taking antihy-
pertensive medication, or self-report of previous diagno-
sis. Fasting triglycerides concentrations > 150 mg/dL were 
classified as hypertriglyceridemia. Obesity was defined 

BMI > 30  kg/m2, and abdominal obesity was classified 
according Adult Treatment Panel III [43], waist circum-
ference > 102 cm in males and > 88 cm in females.

All serum samples kept frozen until processed in a 
central laboratory certified by the External Compara-
tive Evaluation of Laboratories Program of the College of 
American Pathologists (Departamento de Endocrinología 
y Metabolismo, Instituto Nacional de Ciencias Médicas 
y Nutrición, México City). Blood samples were drawn 
from the radial vein after ~ 9 h fasting and were placed in 
EDTA-treated tubes (BD-vacutainer TM, London, UK). 
Samples were centrifuged for 15 min at 3000 rpm at 4 °C 
and stored at − 80  °C until the analysis. Serum concen-
tration of glucose, total cholesterol, high-density lipopro-
tein cholesterol (HDL-c), were analyzed as was described 
previously [38].

Metabolite determinations
Metabolites were analyzed by proton Nuclear Mag-
netic Resonance (NRM) in serum samples. The meth-
odology has been previously described in detail [44]. In 
brief, the procedure defines three molecular windows to 
obtain information on (a) lipoprotein subclasses includ-
ing chylomicrons or large VLDL particles), (b) serum 
lipid components including ω-3 and ω-6, poly, mono, and 
saturated fatty acids, phospholipids (PL), triglycerides 
(TG), cholesterol (C), free cholesterol (FC), and choles-
terol esters (CE), apolipoprotein A-I and APOB, and (c) 
low molecular weight components including alanine, 
glutamine, glycine histidine, isoleucine, leucine, valine, 
phenylalanine, tyrosine, acetate, acetoacetate, 3-hydroxy-
butyrate, creatinine, albumin and glycoprotein acetyl 
(a-1 acid glycoprotein). Quality control procedures were 
performed according a previous metabolomics pipeline 
including the following steps: (1) removing metabolites 
with > 25% missing data, (2) log-transforming the remain-
ing metabolites, and (3) performing rank-based inverse 
normal transformation to calculate metabolite abun-
dance z-scores.

Statistical analysis
The study sample was categorized into three groups 
according to glycemic status at the end of follow-up: 
regression to normoglycemia, impaired fasting glucose 
maintenance, or progression to type 2 diabetes. Compar-
isons between these three groups were tested with one-
way ANOVA for continuous variables or with chi-square 
test for qualitative variables. Clinical categorical variables 
were reported as frequencies and percentages. Quan-
titative variables were reported as means and standard 
deviation for normal distributed variables or median and 
interquartile range for non-normal distributed variables.
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We used multivariable Cox proportional hazards 
models to calculate hazard ratios (HR), and 95% con-
fidence interval (95% CI) for regression to normogly-
cemia for clinical and metabolomic factors. Variables 
with evidence of nominal significant association in the 
bivariate analysis, that did not exhibit collinearity (vari-
ance inflation factor > 7), were selected for inclusion in 
predictive models. The best model was selected as the 
set of variables with the highest discriminatory capa-
bility according to the C statistic and the area under 
the receiver operating characteristic curve (ROC). To 
correct overfitting in the AUC, we used 2000 strati-
fied bootstrap replicated to generate 95% confidence 
intervals. We tested the difference between the predic-
tive capability of estimates from the clinical and clini-
cal + metabolomic models with the DeLong test [45]. 
Sensitivity analyses were conducted to investigate 
associations with HOMA-IR and HOMA-B using lin-
ear regression modeling accounting for follow-up time, 
confounders, and corresponding baseline values. We 
considered two sided α level of 0.05 for all analyses. All 
analyses were conducted using R software version 3.4.3.

Results
From 9637 participants included in the primary cohort, 
a total of 491 individuals were eligible for this analysis 
based on their impaired fasting glucose status at base-
line. The most frequent cause of exclusion from the pri-
mary cohort was glycemia < 100 mg/dL at baseline, which 
excluded 56.43% participants (N = 2808). After ~ 2.5 years 
of follow-up, n = 111 (22.6% of N = 491) participants 
regressed to normoglycemia, while 235 (47.9%) remained 
as impaired fasting glucose and 145 (29.5%) progressed 
to type 2 diabetes. Baseline characteristics from included 
participants according to glycemic phenotypes at the end 
of follow-up are shown in Table 1. Compared with indi-
viduals who progressed to type 2 diabetes or maintained 
their impaired fasting glucose status, individuals who 
regressed to normoglycemia had lower fasting glucose 
concentrations (p < 0.001), and lower BMI (p = 0.049).

Clinical variables associated with regression 
to normoglycemia
The multivariable-adjusted hazard ratio (HR) of regres-
sion to normoglycemia was 1.10 (95% confidence interval 
[CI] 1–1.03) per 10 years of age, 0.94 (95% CI 0.91–0.98) 

Table 1  Baseline characteristics between groups according final glucose status (n = 491)

Abdominal obesity male > 102 cm, female > 88 cm. Hypertension: > 130 mmHg or > 88 mmHg or taking antihypertensive medication, or self-report of previous 
diagnosis

ATP III adult treatment panel III, IFG impaired fasting glucose IFG, T2D type 2 diabetes, BMI body mass index (kilogram/height2), HDL-C high-density lipoprotein 
cholesterol, LDL-c low-density lipoprotein-cholesterol, HOMA-IR Homeostasis Model Assessment for Insulin Resistance (fasting glucose * fasting insulin/405), 
hypertriglyceridemia: fasting triglycerides > 150 mg/dL

One-way ANOVA was used to compute the p value between three groups

Overall (n = 491) Regression 
to normoglycemia 
(n = 111)

IFG maintenance 
(n = 235)

Progressed to T2D 
(n = 145)

p value

Age (years) 48.72 ± 11.02 49.98 ± 11.2 48.35 ± 11.00 48.34 ± 10.87 0.27

Women n, (%) 327, (66.59) 75, (67.5) 161, (68.5) 91 (62.7) 0.498

Hypertension 341 (69.45) 76, (68.4) 173, (73.6) 92, (63.4) 0.262

Years of education 11.72 ± 5.01 12.52 ± 5.41 11.61 ± 4.99 11.29 ± 4.68 0.061

BMI (kg/m2) 30.15 [6.3] 29.45[6.4] 30.00 [5.5] 30.78 [7.25] 0.049*

Obesity n, (%) 248 (50.5) 51 (45.9) 116 (49.36) 81 (55.86) 0.258

Abdominal obesity n, (%) 298 (60.6) 58 (52.2) 144 (61.27) 96 (66.2) 0.074

Sedentary habit n, (%) 348 (70.8) 76, (68.4) 169, (72) 103, (71) 0.804

Fasting glucose (mg/dL) 105.00 [8] 103.00 [6] 105.00 [8] 108.00 [12] 0.001*

Fasting insulin (UI) 14.80 [11.2] 13.80 [11.05] 15.05 [10.2] 14.6 [11.5] 0.508

HOMA-IR 3.92 [2.9] 3.6 [2.9] 4.0 [2.7] 3.95 [3.28] 0.285

HOMA-B 46.83 [37.23] 44.50 [39.91] 47.41 [34.6] 46.02 [38.67] 0.673

METS-IR 49.40 [12.11] 48.45 [13] 49.44 [11.3] 50.48 [12.2] 0.289

Triglycerides (mg/dL) 197.00 [121] 200.00 [169] 188.00 [112] 205.00 [116] 0.542

Hypertriglyceridemia n, (%) 355 (72.3) 76 (68.4) 169 (71.9) 110 (75.86) 0.417

Total-cholesterol (mg/dL) 217.42 ± 42.70 224.69 ± 45.3 214.39 ± 43 216.76 + 39.44 0.184

HDL-c (mg/dL) 42.14 ± 10.65 43.05 ± 10.11 41.29 ± 10.10 42.82 ± 11.84 0.987

LDL-c (mg/dL) 134.51 ± 32.74 138.78 ± 31.0 133.77 ± 35.04 132.60 + 29.83 0.232

Apolipoprotein-B (mg/dL) 116.00 [38.4] 120.0 [36.5] 115.00 [39.35] 115.00 [37] 0.712
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per 1 standard deviation (SD) increase in BMI, 0.91 (95% 
CI 0.88–0.95) per 1 SD increase in fasting glucose, 0.91 
(95% CI 0.84 to 0.99) per 1SD increase in HOMA-IR, and 
0.99 (95% CI 0.94–0.98) per 1 SD increase in METS-IR 
(Table 2).

Metabolomic variables associated with regression 
to normoglycemia
After adjustment for potential confounders, we identified 
18 metabolites associated with regression to normoglyce-
mia in models adjusting for baseline age, sex, BMI, and 
fasting glucose (Fig.  1). Ten metabolites showed a posi-
tive association with regression to normoglycemia, most 
of them capturing different HDL composition character-
istics (hazard ratios [HR] ranging from 1.22 to 1.32 per 
1 SD increment). Eight metabolites showed a negative 
association with regression to normoglycemia, includ-
ing three LDL composition-related and two VLDL com-
position-related (HR ranging from 0.72 to 0.80 per 1 SD 
increment; Fig. 2). 

The multivariable adjusted relative risk of regression 
to normoglycemia was 1.32 (95% CI 1.09–1.61) per 1 
SD-increment in cholesterol esters in very large HDL, 
1.31 (95% CI 1.07–1.59) per 1 SD-increment in total 
lipids in very large HDL, 1.30, (95% CI 1.07–1.59) per 1 

SD-increment concentration of large HDL particles, 1.29 
(95% CI 1.06–1.57) per 1 SD-increment in total choles-
terol in very large HDL, and 0.73 (95% CI 0.59–0.90) per 
1 SD-increment in albumin, In addition, we showed that 
some metabolites featuring LDLc composition lipopro-
teins were inversely associated with regression to nor-
moglycemia including phospholipids in medium LDL, 
0.78 (95% CI 0.63–0.96), free cholesterol in small LDL 
0.79 (95% CI 0.64–0.98), phospholipids in large LDL, 0.79 
(95% CI 0.64–0.98). In a sensitive analysis, we identified 
twenty-five metabolites associated with HOMA-IR and/
or HOMA-B levels (Table 3).

Predictors of regression to normoglycemia
The clinical variables with higher performance to pre-
dict regression to normoglycemia were age, fasting glu-
cose, and BMI (AUC = 0.727, 95% CI 0.66–0.78). We 
next investigated whether adding uncorrelated metabo-
lomic features to the clinical prediction model improved 
the predictive capability of the model. We showed that 
adding information from triglycerides in large HDL, 
albumin, citrate, increased the AUC to 0.744 but the dif-
ference with the clinical prediction model was not signifi-
cant (95% CI 0.68–0.80; p = 0.485; Fig. 3).

Discussion
Here, we inform the regression and progression rates 
of dysglycemia in a set of adults with impaired fast-
ing glucose living in urban centers of Central Mexico. 
After ~ 2.5 years of follow-up, 22.6% subjects regressed to 
normoglycemia, 36% remained as impaired fasting glu-
cose and 22.9% progressed to type 2 diabetes. We showed 
that age, lower BMI, and lower glycemia were the main 
clinical predictors associated with regression to nor-
moglycemia, and that the addition of NMR-based set of 
metabolomics biomarkers, did not significantly improved 
the predictive capability over the model that included 
clinical variables alone. Taken together, our findings may 
have implications for cardiovascular prevention strate-
gies as they identify a set of clinical features that are asso-
ciated with less likelihood for developing type 2 diabetes 
among individuals with impaired fasting glucose.

Rates of regression to normoglycemia
To our knowledge, this is the first report of the rate of 
regression in Latin-American populations, a popula-
tion that is characterized by the high conversation rates 
from impaired fasting glucose to type 2 diabetes. There 
are few studies that have focused on regression to nor-
moglycemia despite it is the most common and profita-
ble outcome in the midterm and long-term respectively. 
Our results allow us to compare the regression rates 
in Mexicans compared against other populations. The 

Table 2  Cox proportional hazard model regression 
results of  clinical factors associated with  regression 
to normoglycemia

BMI body mass index

p value was computed in a Cox regression model comparing subjects who 
regress to normoglycemia and subjects to progressed to type 2 diabetes (T2D)

HR CI 95% p value

Age (10 years) 1.019 1.10–1.30 0.044

Sex 0.779 0.52–1.16 0.226

Hypertension 0.819 0.54–1.23 0.341

Years of education 0.994 0.95–1.03 0.771

BMI (kg/m2) 0.947 0.91–0.98 0.009

Obesity n, (%) 0.630 0.43–0.92 0.017

Abdominal obesity n, (%) 0.586 0.40–0.85 0.006

Sedentary habit n, (%) 0.768 0.51–1.15 0.206

Fasting glucose (mg/dL) 0.919 0.883–0.956 0.001

Fasting insulin (UI) 0.980 0.95–1.002 0.070

HOMA-IR 0.916 0.845–0.99 0.03

HOMA-B 0.995 0.98–1.02 0.139

METS-IR 0.996 0.94–0.98 0.002

Triglycerides (mg/dL) 0.99 0.99 – 1.00 0.863

Hypertriglyceridemia n, (%) 0.75 0.50–1.12 0.168

Total-cholesterol (mg/dL) 1.002 0.99–1.00 0.259

HDL-c (mg/dL) 1.01 0.99–1.02 0.169

LDL-c (mg/dL) 1.04 0.99–1.01 0.271

Apolipoprotein-B (mg/dL) 1.01 0.99- 1.08 0.742
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rate found in this study is higher to what was found in 
an Asian and in a multiethnic cohort at 1 and 10 years 
of follow-up [15, 46]. Our findings concurs with data 
from the Diabetes Prevention Program (DPP) show-
ing that within treatment groups, normoglycemia was 
attained once in 23% (170/736), 25% (161/647) and 
23% (137/607), in intensive life style, metformin, and 
placebo treatment arms, respectively [17]. Our find-
ings reinforce the identification of individuals with 
impaired fasting glucose to advance the prevention of 
type 2 diabetes, to overcome the burden of cardiometa-
bolic complications. The identification of the variables 
that predict a higher likelihood for having regression 
may be useful to prioritize access to care, particularly 
in populations where the medical access is limited. Our 
findings confirm the importance of fasting glucose and 
BMI in the profile of the subjects who achieve regres-
sion to normoglycemia and expand them to age, which 
has been shown very relevant for maintaining normal 
glucose levels [47, 48].

Metabolomics and metabolic dysfunction
A novel contribution of our study is that we investigated 
the associations of circulating metabolites with regres-
sion to normoglycemia, in a Hispanic population (Addi-
tional file  1: Table  S1). In this study we identified 18 
associated with regression to normoglycemia. Metabo-
lites associated with regression to normoglycemia high-
light features of lipid components. Several studies have 
found evidence of changes in lipid coregulation existing 
before diabetes onset [27, 49], principally with triacylg-
lycerols (TAGs), lyso-phosphatidylinositols, phosphati-
dylcholines. In this study, we showed that phospholipids 
in medium or large LDL particles of free cholesterol in 
small LDL were associated with lower likelihood to 
regress to normoglycemia, while lipid components in 
large HDLc particles were associated with increased 
likelihood to regress to normoglycemia. Although, there 
is lack of information regarding the clinical implications 
and usability of HDL particles, some evidence describes 
a negative relationship between the number of large HDL 
particles and cardiovascular disease, and conversely, 
a reduced mean HDL size is equally associated with 

Fig. 1  Metabolites associated with regression to normoglycemia (p < 0.05). HR: hazard ratio and their CI 95%, models were adjusted by baseline 
variables: age, sex, body mass index, and fasting glucose
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cardiovascular disease in large-scale clinical studies [50]. 
This direction of the effect was confirmed by our study 
in the associations with insulin sensitivity and secre-
tion where larger HDL particles had a negative associa-
tion with insulin sensitivity in subject who remained as 
impaired fasting glucose or regressed to normoglycemia. 
Our findings support evidence of the clinical usability 
of a detailed lipid metabolomic profiling and their clini-
cal consequences. Although further studies are needed, 
HDL composition profile can be used as biomarkers of 
cardiovascular deterioration even in an early state such 
as impaired fasting glucose.

In our study, we found positive associations of several 
lipoprotein metabolites with regression to normogly-
cemia: total cholesterol in large VLDL, total cholesterol 
in chylomicrons and extremely large VLDL, cholesteryl 

esters in chylomicrons, and extremely large VLDL. Pre-
vious findings suggest that the genetic underpinnings 
of mean lipoprotein diameter differ by race/ethnicity. 
SNPs in APOB gene region had been significantly associ-
ated with mean VLDL diameter in Hispanics, our VLDL 
results might be a footprint of these associations [51].

In this report, the prioritized NMR metabolites did not 
improve the predictive capability to regress to normogly-
cemia. These findings may be somewhat limited by the 
coverage of plasma metabolites and lipids available in our 
metabolomics platform. Recent data suggest that more 
granular lipid panels including triglycerides or phospho-
lipids with different acyl chain lengths and saturation are 
differently associated with T2D risk [27, 49], hence our 
findings need to be interpreted with caution.

Fig. 2  Correlation matrix with eighteen metabolites associated with normal glucose tolerance regression
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In our study we found that individuals with low con-
centrations of albumin at baseline were more likely to 
regress to normoglycemia, even adjusting for age, BMI 
and fasting glucose concentrations (p < 0.003). Serum 
albumin is the main protein of the plasma, its main func-
tion is the regulation of the colloidal osmotic pressure of 
the blood [52]. Previous reports show inverse associa-
tions with type 2 diabetes-related traits [53, 54]. Some 
differences might lie in the studied sample size, most of 
studies have been studied the risk of healthy individu-
als to develop type 2 diabetes, whereas our sample is 
composed by high-risk subjects with impaired fasting 
glucose. Therefore, the protective capability conferred 
by the albumin thought its role as antioxidant might be 
diminished.

Limitations and future directions
There are several limitations in our study including the 
use of only one measurement of fasting glucose meas-
urement to define regression to normoglycemia. This 
increases the likelihood to fall under the regression 
toward the mean bias [55]. Another limitation of this 
study is the use of a metabolomics panel that included 
only a limited number of metabolites. The inclusion of 
other metabolomic species such as the ones available in 
a non-targeted metabolomics platforms or the imple-
mentation of a broader lipid panel could yield different 
results. One of the main limitations of this study is that 
dietary information was not available. Although it is pos-
sible that residual confounding by dietary modifications 
might exist in our study, participants were not instructed 
to follow any specific diet. Our findings need to be con-
firmed in independent studies and other populations at 
high risk of type 2 diabetes, with more granular data and 

Table 3  Metabolites at baseline associated with HOMA-IR and HOMA-B at follow-up

Italic metabolites represent those associated with normal fasting glucose regression

CI 95% interval confidence, SE standard error

p values were computed with a lineal regression model considering as confounders: age, sex, body mass index, and baseline values: HOMA-IR and HOMA-B 
respectively

Metabolites Metabolites associated with HOMA-IR Metabolites associated with HOMA-B

β SE CI 95% p value β SE CI 95% p value

Phospholipids in large HDL − 0.14 0.04 − 0.24 to − 0.04 0.003 − 0.11 0.04 − 0.20 to − 0.02 0.011

Concentration of large HDL particles − 0.15 0.04 − 0.24 to − 0.05 0.002 − 0.11 0.04 − 0.20 to − 0.02 0.012

Total lipids in very large HDL − 0.15 0.04 − 0.24 to − 0.05 0.002 − 0.12 0.10 − 0.20 to − 0.02 0.008

Creatinine 0.10 0.04 0.005 to 0.20 0.038 0.12 0.04 0.03 to 0.21 0.009

Mean diameter for HDL particles − 0.12 0.04 − 0.22 to − 0.03 0.007 − 0.10 0.04 − 0.19 to − 0.01 0.021

Free cholesterol in large HDL − 0.13 0.05 − 0.23 to − 0.03 0.008 − 0.11 0.04 − 0.21 to − 0.02 0.012

Cholesterol esters in very large HDL 0.09 0.04 0.001 to 0.19 0.04

Free cholesterol in very large HDL − 0.15 0.04 − 0.24 to − 0.05 0.001 − 0.11 0.04 − 0.20 to − 0.02 0.012

Total cholesterol in large HDL − 0.13 0.05 − 0.23 to − 0.03 0.008 − 0.12 0.04 − 0.21 to − 0.09 0.010

Cholesterol esters in large HDL − 0.13 0.05 − 0.23 to − 0.03 0.008 − 0.12 0.04 − 0.21 to − 0.03

Total lipids in large HDL − 0.12 0.05 − 0.22 to − 0.03 0.010 − 0.12 0.04 − 0.21 to − 0.02 0.010

Concentration of large HDL particles − 0.12 0.05 − 0.22 to − 0.03 0.010 − 0.12 0.04 − 0.21 to − 0.02 0.010

Phospholipids in medium HDL − 0.13 0.05 − 0.22 to − 0.03 0.009 − 0.12 0.04 − 0.21 to − 0.03 0.009

Total cholesterol in very large HDL − 0.12 0.04 − 0.21 to − 0.02 0.014 – – –

Total cholesterol in HDL2 − 0.11 0.04 − 0.21 to − 0.02 0.016 − 0.09 0.04 − 0.18 to − 0.009 0.03

Total cholesterol in HDL − 0.10 0.04 − 0.20 to − 0.01 0.02 − 0.09 0.04 − 0.18 to − 0.002 0.04

Free cholesterol in medium HDL − 0.10 0.04 − 0.20 to − 0.009 0.03 – – –

Cholesterol esters in very large HDL − 0.10 0.04 − 0.20 to − 0.009 0.03 – – –

Mean diameter for LDL particles 0.10 0.04 0.009 to 0.20 0.03 0.010 0.04 0.01 to 0.19 0.021

Free cholesterol in very large HDL − 0.10 0.04 − 0.19 to − 0.005 0.03 – – –

Cholesterol esters in small VLDL 0.10 0.04 0.005 to 0.20 0.03 – – –

Total cholesterol in small VLDL 0.10 0.04 0.004 to 0.20 0.04 – – –

Triglycerides in medium HDL 0.10 0.04 0.002 to 0.19 0.04

Triglycerides in small VLDL − 0.09 0.04 − 0.18 to − 0.001 0.04

Triglycerides in medium HDL − 0.10 0.04 − 0.19 to − 0.01 0.02
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extended follow-up. Finally, additional studies to test the 
treatment response such as diet and physical activity will 
complement the evidence in regards the usability of these 
variables.

Conclusions
The findings from this study provide quantitative evi-
dence on the progression and regression rates of dys-
glycemia and identify a set of clinical features that are 
associated with regression to normoglycemia among 
individuals with impaired fasting glucose. We also pro-
vide evidence about the role of specific lipoproteins sub-
types on the regression to normoglycemia and highlight 
the role of HDL and LDL particles composition. Yet, we 
showed that the addition of an NMR-based set of metab-
olomics information did not improve the capability to 
predict regression to normoglycemia. Our findings can 
serve to inform and design future strategies to advance 
the prevention to type 2 diabetes and related cardiometa-
bolic complications.
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